The design of a beautiful weapon [resolving the paradox of the weakening combatant]

Stefan Dennenmoser

Francesca Gherardi Memorial Award University of Florence (May 12, 2016)

Animal weapons are highly diverse

Animal weapons are highly diverse

Emlen 2008

Exaggerated growth is common

Emlen et al. 2012

Compensatory traits

Tomkins et al. 2005, Husak and Swallow 2011

Selectional conflict in multi-functional traits?

Conflict among structures Reduce costs of exaggerated trait Enhance performance of conflicted trait Flight

Conflict within structures

Different functions may perform best at different trait expressions

... change trait design?

Selectional conflict in multi-functional traits?

Hunt et al. (2009):

Assessed multi-functional traits in 51 species (mostly body size and signaling structures)

Male competition and female choice aligned: 82%

No Conflict..

Selectional conflict in multi-functional traits?

Hunt et al. (2009):

Assessed multi-functional traits in 51 species (mostly body size and signaling structures)

Male competition and female choice opposed: 18%

Selectional Conflict!

Candolin et al. 2004, Bonduriansky and Rowe 2003

Compensation for opposed sexual selection on multi-functional traits?

Male Fiddler Crab's Major Claw

Mate attraction

Claw waving display (e.g., McLain and Pratt 2007)

Weapon

Male-male combat (e.g., Levinton and Allen 2005)

Longer claws are more attractive

Longer claws are weaker

Paradox of the weakening combatant

Levinton and Allen (2005)

As claws grow and get longer fingers, they get relatively weaker because mechanical advantage decreases.

A possible two-part solution

1) Crabs deliver force at tubercles instead at claw tip: Better MA (shorter out-lever)

2) Slower loss of MA at tubercles during growth:

Tubercles could maintain their position close to pivot

Preserves MA of shorter claws

Dennenmoser and Christy 2013

Study area and species

Uca terpsichores Uca beebei

Smithsonian Tropical Research Institute

Culebra

Rodman

Part I: How do fiddler crabs fight?

Low Intensity Manus push

Medium Intensity Dactyl slide

High Intensity Fully Interlaced claws

Crane 1966; Hyatt and Salmon 1978

Part I: How do fiddler crabs fight?

https://www.youtube.com/watch?v=hvsfNOtUfNA

Part I: Gripping force: delivered by tubercles

Uca terpsichores

22 recorded fights18x dactyl tubercle4x pollex tubercle

Uca beebei

24 recorded fights21x dactyl tubercle3x pollex tubercle

Contact points of tubercles:

Crabs deliver force at tubercles instead at claw tip

Part 2: Slower loss of MA at tubercles?

Collected claws in the field (94x U.terpsichores; 121x U.beebei)

Measurements:

Out-lever lengths:

Dactyl tubercle (C-D) Pollex tubercle (C-E) Claw tip (C-F)

Claw Length (A-B)

In-lever length: Dactyl height (C-G)

Apodeme area (~muscle cross sectional area)

Loss of MA: lower at tubercles

Tubercles stay relatively close to the pivot as the claw grows

MA compensation at dactyl tubercle

No paradox but a beautiful weapon

Animal weapon diversity

Exaggerated size (female choice; male-male combat)

Fighting style matters (e.g., levering, pinching, gripping)

Functional conflicts through opposed selective forces

Elongated structures *vs.* mechanical advantage (signaling, levering) (gripping, pinching)

Compensation features can be integrated in weapon design

Thank you to Francesca Gherardi for many great inspirations!

Behav Ecol Sociobiol (2006) 59: 500-510 DOI 10.1007/s00265-005-0074-z

ORIGINAL ARTICLE

Francesca Gherardi

Fighting behavior in hermit crabs: the combined effect of resource-holding potential and resource value in *Pagurus longicarpus*

Biol. Lett. (2008) 4, 163–165 doi:10.1098/rsbl.2007.0590 Published online 12 February 2008

Evidence of female cryptic choice in crayfish

Laura Aquiloni* and Francesca Gherardi

Department of Animal Biology and Genetics, University of Florence, Via Romana 17, 50125 Florence, Italy

Thank you!

The Gherardi Family University of Florence

Prof. Felicita Scapini and committee (Prof. Bella Galil, Prof. Marco Vannini, Prof. Alberto Ugolini)

Smithsonian Tropical Research Institute

Supervisor: **John H. Christy** Field assistance: Taewon Kim

... questions?

